Three Body Forces and New Approach to the Lattice Dynamical Study of Pb, Pd and Pt.

Anil Kumar Bajpai Department of Physics Bipin Bihari College, Jhansi (India)

Sunil Bhatia

Department of chemistry

Bipin Bihari College, Jhansi (India) Email-anilbajpai333@mail.com

Abstract

New approach to the lattice dynamical study of metals based on Morse potential has been considered. This study finds better agreement between experimental and theoretical results.

Key Words

Morse Potential Lattice dynamics Phonon dispersion of diagonal and off diagonal Dynamical Matrix

Introduction

Recently Singh and Rathore¹ have studied the lattice dynamics of some cubic metals based on generalised Morse potential. According to this study, cohesive energy, lattice constant and compressibility are the input data for empirical Morse potential².

Calculation

As we know that compressibility and co-hesive energy are the sum of ionic interaction and interaction due to electrons. Mishra and Rathore³⁻⁴ have seperated two and three body part for compressibility on the lines of the Mohammad et al⁵ and then used Morse potential for lattice dynamical study of some metals. The Morse potential comprising of two and three body part coupling the atom (l,k) with two common nearest neighbours (1', k') and (1'', k''), may be written as,

$$\phi^{(3)}(r_1, r_2) = \sum_{\substack{l', k' \\ l'', k''}}^{1} \sum_{l, k} \frac{A(k)}{2} \left[\beta^2 \exp(-2a(r_1 + r_2) - 2\beta \exp\{-\alpha(r_1 + r_2)\} \right]$$
(1)

where A(k) is the three body parameter, r_1 , and r_2 , are separations of the atoms (l', k') and (1", k") from the atom (1, k) respectively and α , β are the usual parameter of the two body Morse potential. The prime on first summation means

 $l', K' \neq l'', k''$

The elements of diagonal and off diagonal dynamical matrix may be given, after solving the usual secular determinant, as

 α_1, α_2 are the first and β_1, β_2 , are the second derivatives of the potential $\phi_{(rj)}^{(2)}$ while β_3 is second derivative of $\phi^{(3)}(\mathbf{r}_1, \mathbf{r}_2)$. The Phonon dispersion based on this model is well predicted by Mishra and Rathore³ for complicated metal Pb.

In this present communication I am going to elaborate the paired and unpaired part in terms of co-hesive energy. Following procedure has been adopted for the same purpose i.e.

$\varphi=\varphi_i+\varphi_e$	where	where ϕ		total cohesi	ive ener	cgy				
		ϕ_i	→	energy due	to ions					
		фe	\rightarrow	energy due	to elec	trons				
Further,										
$\phi_e = E_f + E_x + E_c \qquad(4)$										
Where	E_{f}	(The]	Fermi	energy)	1	$\frac{2.21}{r^2}$ Rydberg				
	E_{x}	(Exch	ange e	energy)	E	$-\frac{0.916}{r}$ Rydberg				
	Ec	(Corre	elatior	n energy)	=	$[0.0622 L_n r - 0.096]$ Rydberg				
while l Rydberg = $13.0 \times 1.6 \times 10^{-24}$ ergs.										

Hence energy due to electrons

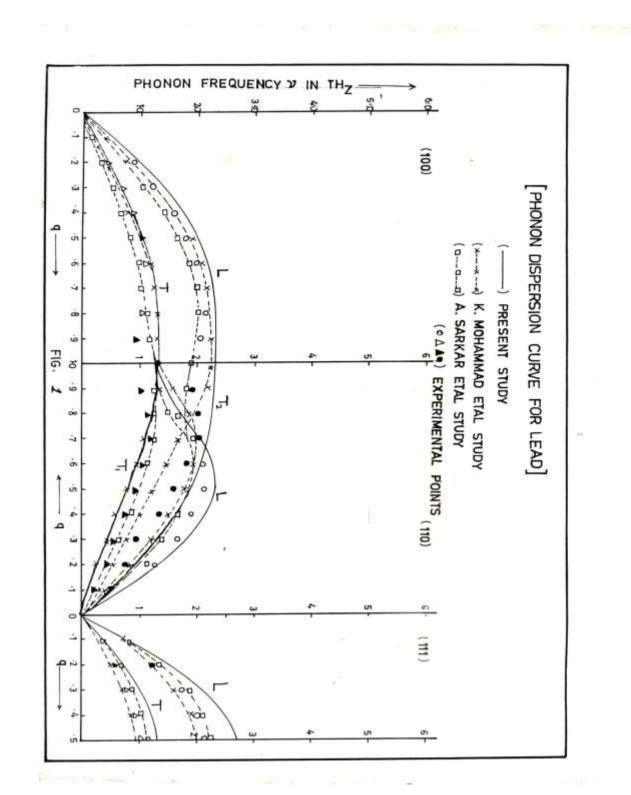
$$\phi_{e} = \left\{ \frac{2.21}{r^{2}} - \frac{0.916}{r} + \left[0.0622L_{n}r - 0.096 \right] \right\} \text{Rydberg}$$
 ------ (5)

Here r is the dimension less quantity and may be true as 2, 3, 4 or 5.

Result and Discussion

From the above facts we reached on the conclusion that input parameters should be purely ionic for the study of Singh and Rathore¹ and of Mishra and Rathore³⁻⁴. This was the main drawback in the above studies^{1,3,4,5}. These studies^{1,3,4,5} were predicting that whole of the co-hesion comes from the two body interaction only while it is contradictory to the basic concept of parameters evaluation. We have developed three body Morse potential on the lines of Mishra and Rathore³⁻⁴ and predicted dispersion relations for fcc solids i.e. Pb, Pd and Pt.

The experimental data⁶ on the Pb have been compared with our results and also with the theoretical findings of Mohammed et al.⁵ and sarkar et al.¹⁰ The neutron scattering data⁷ on Pd in better agreement with our results than that of other theoretical findings of Mohammed et al.⁵ and Vrati⁹. Our results in the Pt are very close to the experimental findings of Duttan et al.⁸. The theoretical results of Rajput¹¹ deviates upwardly while that of Vrati⁹ deviates down wardly with the excperimental findings⁸.


Conclusion

The results shown in the curves, confirm my consideration in terms of co-hesive energy. Fig. 1,2,3 represents the phonon frequencies of the fcc solids Pb, Pd and Pt. Table shows the computed force <u>constants</u> of the same metals.

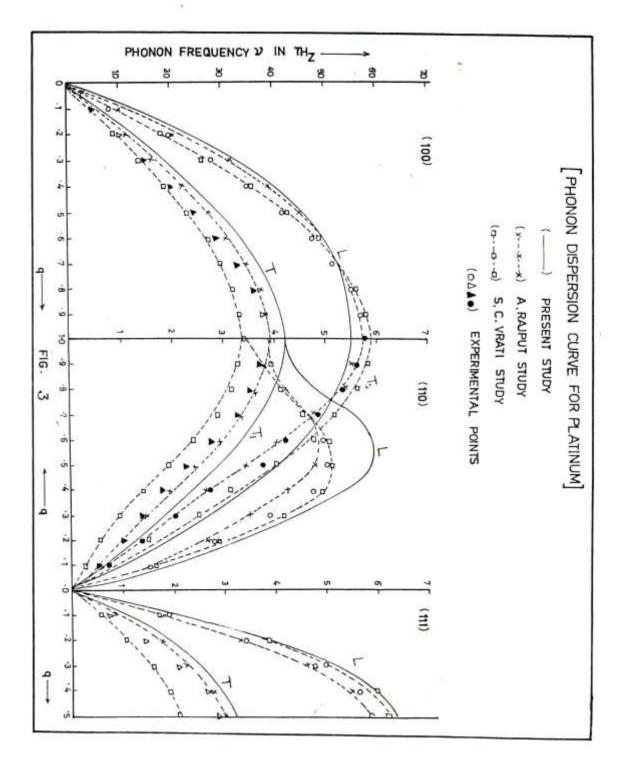

Solids	α_1	α_2	β1	β_2	β3
Pb	0.051	+0.005	0.391	-0.020	0.054
Pd	-0.179	0.029	1.779	0.008	0.175
Pt	-0.247	0.030	2.032	0.075	0.282

 Table 1 : The Computed Force Constants [×10⁴ dynes/cm]

References

G. Singh and R.P.S. Rathore: Phys.Stat. Sol(b) 135, (1986) 513 1.

Phys. Stat. Sol(b) 136. (1986) 57

Ind. J.P and Appld. Phys. 24, (1986) 303

2. P.M. Morse, Phys. Rev. 34. (1929) 57.

- 3. M.K. Mishra and R.P.S. Rathore, Acta. Phys. Pol(a) 75, (1989) 525.
- 4. Manoj Kumar Mishra and Raj Pal Singh Rathore. Proceedings of 77th Ind. Sc. Cong. Pt. (IV) Page 27 Cochin 1990.
- 5. K. Mohammad, M.M. Shukla, F. Milstein, and J. L. Merz, Phys. Rev. B-29. (1984) 3117.

Solid Stat. Commun. 48. (1983) 147.

- 6. A. Furrer and W. Halg. Phys. Stat. Sol. 42 (1970) 821.
- 7. A. P. Miller and B.N. Brochouse, Can. J. Phys. 49, (1971) 704.
- 8. D.H. Dutton, B.N. Brochouse and A.P. Miller, Can. J. Phys. 50 (1972) 2915.
- 9. S.C. Vrati, Agra University Thesis (1980).
- 10. A. Sarkar, D. Sen and S. Sen Gupta, Pramana 26 (1986) 231.
- 11. A. Rajput, Phys. Stat. Sol (b) 128, (1985) 411.

